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Abstract 
A key physical parameter determining stationary directions of a magnetic moment of a 

single-domain ferromagnetic nanoparticle is a type of its effective magnetic anisotropy. Sta-
tionary directions of a magnetic moment of a particle change under an influence of an exter-
nal magnetic field. For better understanding of a behavior of a magnetic moment of a nano-
particle in an external magnetic field, we proposed a simple method for visualization of an 
energy density of magnetic anisotropy of a single-domain magnetic nanoparticle. In a spheri-
cal coordinate system, an energy density of magnetic anisotropy is represented as a certain 
surface, which makes it possible to clearly demonstrate the presence of energy minima that 
determine the equilibrium directions of a single vector of magnetization of a nanoparticle in 
space. The cases of uniaxial, cubic, and combined magnetic anisotropy are considered in de-
tail. The change in the total energy of a magnetic nanoparticle under the influence of an ex-
ternal uniform magnetic field is demonstrated. 
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1. Introduction 
Magnetic nanoparticles are widely used in modern technologies, such as magnetic recording 
of high density information, production of permanent magnets and magnetic fluids, microe-
lectronics, etc. [1, 2]. Recently, ensembles of magnetic nanoparticles have been used with 
great success in biomedicine, magnetic resonance imaging, targeted drug delivery, purifica-
tion of biological media from toxins, magnetic hyperthermia, to fight malignant neoplasms, 
and in many other areas [3-6]. 
Meanwhile, physics of ensembles of magnetic nanoparticles is very complex [7–11]. The phys-
ical properties of an ensemble are determined by a large combination of geometric and mag-
netic parameters, such as particle size and shape, saturation magnetization, type of magnetic 
anisotropy, and values of magnetic anisotropy constants. An ensemble density, viscosity, and 
temperature of the medium in which magnetic nanoparticles are distributed are also of great 
importance. For better understanding a complex behavior of an ensemble of magnetic nano-
particles under various conditions, it is useful to first study an evolution of a magnetic mo-
ment of an isolated single-domain magnetic nanoparticle when an external magnetic field 
changes. This behavior substantially depends on the type of effective magnetic anisotropy of 
the nanoparticle [7–9]. 
Visualization of complex physical processes is often used as one of the ways to study phenom-
ena occurring at the atomic level [12, 13]. For example visualization method is used for stud-
ies of physical processes in nanostructures in [12]. Visualization of complex, multidimension-
al numerical data allows us to understand the processes taking place in the studied objects. 
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Therefore, a graphic representation of the various types of magnetic anisotropy that exist in 
magnetic nanoparticles makes it easier for students and young researchers to understand the 
essence of complex physical processes. 
This article is devoted to the development of a graphical representation of an energy density 
of magnetic anisotropy of single-domain magnetic nanoparticles. A change in the total energy 
of a magnetic nanoparticle under the influence of an external uniform magnetic field is also 
considered. All images shown in this article were obtained using Matplotlib data visualization 
package in Python programming language. 

2. Properties of magnetic nanoparticles 
As is known [7–9], in a ferromagnetic sample, a modulus of a local magnetization vector 

 rM


 is constant and equal to the saturation magnetization of a ferromagnet,   sMrM 


. 

The direction of this vector is described by a unit magnetization vector,     sMrMr


  

  1r


 . In most cases, single-domain magnetic nanoparticles, which size is smaller than the 

diameter of a single-domain particle D < Dc, are most interesting for applications. A single-
domain nanoparticle in the lowest energy state is uniformly magnetized. Such a particle is a 
small permanent magnet, which creates a sufficiently strong inhomogeneous magnetic field 
in the surrounding space. The density of magnetic energy of a uniformly magnetized particle 
is high, because it is proportional to [7–9] the square of the saturation magnetization, wm ~ 
Ms

2. However, for a single-domain spherical nanoparticle, a magnetic energy density does not 
depend on the direction of a single magnetization vector due to symmetry in a distribution of 
magnetic charges on the surface of the sphere. At the same time, experiment shows that in 
equilibrium, in absence of an external magnetic field, the unit magnetization vector of a sin-
gle-domain spherical nanoparticle is oriented in strictly defined directions with respect to the 
symmetry axes of the crystal lattice of the particle. These distinguished spatial directions are 
called axes of easy magnetization of a nanoparticle (also, easy axes of anisotropy of a parti-
cle). Since an exchange energy of a uniformly magnetized particle is equal to zero, and a mag-
netic energy of a spherical nanoparticle does not depend on the direction of a single magneti-
zation vector, the directions of easy anisotropy axes are determined by the form of the energy 

density of magnetic crystallographic anisotropy,  


aa ww   [7-11]. 

For crystals with a single axis of symmetry, it follows from general considerations [7–11] that 
the energy density of magnetic crystallographic anisotropy can be represented as an expan-
sion in powers of a unit magnetization vector 
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where, for simplicity, it is assumed that selected axis of symmetry of a crystal is parallel to the 
z axis of a Cartesian coordinate system. In equation (1), K1, K2, etc. there are uniaxial magnet-
ic anisotropy constants, which usually decrease in absolute value, |K1| > |K2|. From equation 
(1) it follows that in the case K1, K2 > 0 an energy density of uniaxial magnetic anisotropy has 
the smallest value, wa = 0, if the unit magnetization vector is parallel to the z axis, i.e 

 1,0,0


or  1,0,0 


. Thus, for a particle with anisotropy energy density (1), these direc-

tions of the unit vector are preferable.  
On the other hand, from symmetry considerations it follows [7–11] that for crystals with cubic 
symmetry of the crystal lattice, an energy density of magnetic crystallographic anisotropy can 
be specified as 
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when K1c > 0, K2c  0 the directions of easy magnetization of a particle with cubic anisotropy 
are parallel to axes of a Cartesian coordinate system, since the magnetic anisotropy energy (2) 



is minimal, wa = 0, when the unit magnetization vector is parallel to the x, y, or z axes, i.e. 

 0,0,1


, etc. Thus, in this case, a particle has 6 free easy magnetization. If a constant K1c < 

0, then directions of easy magnetization are parallel to diagonals of a cube, and the magnetic 
anisotropy energy (2) in this case has a minimum for the vector form

 31,31,31 


. 

It should be noted, however, that expressions (1), (2) are only the simplest energy contribu-
tions that determine a direction of the axes of easy magnetization of a nanoparticle in space. 
Another important contribution to the effective magnetic anisotropy is related to the differ-
ence between the shape of the particle and the spherical one. This contribution is called the 
shape anisotropy energy [7–9]. It is especially important for magnetically soft type nanopar-
ticles with a sufficiently high saturation magnetization. A famous Braun – Morrish theorem 
[12] claims that a magnetostatic energy of a uniformly magnetized particle of arbitrary shape, 
to a first approximation, coincides with a magnetostatic energy of some equivalent ellipsoid. 
If axes of a Cartesian coordinate system are chosen along the symmetry axes of the equivalent 
ellipsoid, then a magnetic energy density of a nanoparticle will take the form [14] 
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where Nx, Ny, Nz are demagnetizing factors of an equivalent ellipsoid in an indicated coordi-
nate system.  
Obviously, demagnetizing factors of a cube-shaped particle are equal to each other due to 

symmetry, Nx = Ny = Nz = 4/3. Given that Nx = Ny = Nz = 4/3, it is easy to see that the 
magnetic energy of a uniformly magnetized cube, like the magnetic energy of a spherical na-
noparticle, does not depend on the direction of a single magnetization vector and does not 
contribute to the magnetic anisotropy of the particle. On the other hand, for a typical case of 
an elongated spheroid, for which the transverse demagnetizing factors are equal, Nx = Ny > 
Nz,  the magnetic energy of the particle (3) can be written as 
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We note here that an addition of an arbitrary constant to an energy density of magnetic ani-
sotropy obviously does not affect the direction of the light axes of the particle anisotropy, and 
does not affect the dynamics of the unit magnetization vector [7–9]. This situation is similar 
to a case of classical mechanics, where the potential energy of a particle is given up to an arbi-
trary constant, because a force acting on the particle is determined by a gradient of potential 
energy.  
Comparing equations (1) and (4), we can conclude that an elongated equivalent spheroid can 

be characterized by an effective shape anisotropy constant,   22

zxsef NNMK  . Moreover, 

both the direction of the easy axis of anisotropy and the values of the effective demagnetizing 
factors Nx and Nz are determined [14] by the real shape of the non-ellipsoidal nanoparticle. A 
total energy of a magnetic anisotropy of a particle in a general case is the sum of an energy of 
magnetocrystallographic anisotropy and a shape anisotropy energy. In this case, it takes place 

[15] an effective combined magnetic anisotropy of a nanoparticle,  


efw . 

In a presence of a uniform external magnetic field H, a single-domain nanoparticle remains 
uniformly magnetized. In this case, stationary, time-independent, directions of a unit mag-
netization vector are determined by a minima of a total energy of a particle in an external 
magnetic field 

    

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, (5) 



Naturally, a position of minima and maxima of a total energy of a single-domain nanoparticle 
and their number changes with a change in a magnitude and direction of the external mag-
netic field with respect to direction of easy axes of anisotropy of a particle. 

3. Visualization of an energy density of a particle anisot-
ropy 

3.1. Uniaxial and cubic types of magnetic anisotropy 

In order to clearly demonstrate a location of minima and maxima of an energy density of 
magnetic anisotropy, it is convenient to set this energy in a spherical coordinate system [7], 

  ,aa ww  , by expressing in equations (1) - (5) components of a unit magnetization vector 

through spherical angles (, ), so that  cossinx ,  sinsiny ,  cosz
. Then in a 

spherical coordinate system it is possible to construct a certain surface of a form 
    ,, awr  . 

 

 
Fig. 1. An energy density of magnetic anisotropy for uniaxial and cubic types of magnetic ani-

sotropy of a nanoparticle. 
 

Figure 1a shows a reduced energy density of uniaxial magnetic anisotropy,   1, Kwa  , equa-

tion (1), for a case K1 > 0, K2 = 0. Obviously, an energy density of magnetic anisotropy has 

deep minima for directions of a unit magnetization vector close to the angles  = 0, . In this 
case, it is said that a particle has two deep potential wells separated by a high symmetric po-

tential barrier, which maximum corresponds to the angle  = /2.  



Figure 1b shows a reduced energy density of uniaxial magnetic anisotropy (1) for a case K1 < 

0, K2 = 0. To exclude negative radius values in a dependence   ,awr  , a corresponding 

positive constant is added  to equation (1). As Fig. 1b, in a case under consideration, a mini-

mum energy corresponds to directions lying in a plane  = /2. This type of anisotropy is 
called a “easy plane” because an anisotropy energy remains minimal, equal to zero, for all di-
rections lying in this plane. Real particles can have additional weak contributions to an ener-
gy of magnetic anisotropy, which emit some directions in an indicated plane, separated, gen-
erally speaking, by small energy barriers. 
In Fig. 1c shows a reduced energy density of cubic magnetic anisotropy,   ca Kw 1, , equation 

(2), for a case K1c > 0, K2c = 0. In this case, an anisotropy energy minima correspond to direc-
tions parallel to axes of a Cartesian coordinate system. In total, there are thus 6 energy mini-
ma, in other words, deep potential wells separated by energy barriers. In an ideal case of a 
spherical nanoparticle, all these potential wells are completely equivalent, so that in equilib-
rium a magnetic moment of a particle can be directed in any of an indicated directions of easy 
magnetization. At the same time, for a case K1c < 0, K2c = 0, shown in Fig. 1d, a minimum en-
ergy corresponds to directions parallel to diagonals of a cube. Therefore, in this case, there 
are 8 equivalent directions for which a magnetic anisotropy energy of a particle has a mini-
mum. 

3.2. Combined type of magnetic anisotropy 

Energy surfaces shown in Fig. 1a - 1d correspond to an ideal case of a spherical magnetic na-
noparticle. If a shape of a particle deviates from spherical, then an energy of magnetic anisot-
ropy, equations (1) - (3), is added to an energy of a shape anisotropy, equation (4), which can 
make a significant contribution to a total anisotropy energy for particles with high saturation 
magnetization. 
 

 
Fig. 2. An energy density for a combined type of magnetic anisotropy of a particle 

 (cubic anisotropy + uniaxial shape anisotropy). 



 
As an example, Figure 2 shows the case of combined magnetic anisotropy. Here to the energy 

density of cubic anisotropy,   ca Kw 1, , shown in Fig. 1c, a reduced energy density of the 

shape anisotropy,    cef KnK 1

2
1


 , is added. A unit vector n indicates a direction of the easy 

axis of a shape anisotropy. 
First, we consider a simple case when the axis of a shape anisotropy energy coincides with 
one of the axes of cubic anisotropy (see Fig. 2a, 2b). In Fig. 2a, a ratio of anisotropy constants 
was chosen small, Kef/K1c = 0.1. However, as shown in Fig. 2a, due to an influence of a shape 
anisotropy energy, a surface of a combined anisotropy energy becomes, in fact, two-pit al-
ready for small values of the Kef/K1c ratio, and two main, deep potential wells are located in 
directions parallel to the vector n. In this case, lateral energy minima are easily distinguisha-

ble in Fig. 2a, they disappear only at Kef/K1c  1.0. So, Figure 2b shows a case of Kef/K1c = 2.0, 
when only two energy minima remain in directions parallel to the vector n. 
If a vector n is oriented arbitrarily with respect to cubic axes of anisotropy (see Fig. 2c, 2d), 
then a corresponding energy surface becomes very complex for sufficiently small values of a 
ratio Kef/K1c. However, with an increase in this ratio, Kef/K1c = 0.1, a global energy surface al-

so becomes two-fold, as Fig. 2c, 2d for the directions of the vector n given by angles (θ = /4, 

φ = /4) и (θ = -/4, φ = /4), respectively. Note that a barrier separating potential wells has 
a very complex shape. A shape of an energy barrier between potential wells is extremely im-
portant because it determines a position of an energy saddles, or passes that connect adjacent 
potential wells. At finite temperatures, due to thermal fluctuations, a magnetic moment of a 
nanoparticle can jump between different potential wells, and such jumps in a magnetic mo-
ment are most likely to occur through the saddle regions of the energy barrier. 

3.3. An influence of an external magnetic field 

As discussed above, taking into account a magnetic anisotropy energy, a vector of a magnetic 
moment of a nanoparticle has several stable directions in space for which a total energy of a 
nanoparticle has a local minimum. In an absence of an external magnetic field, neglecting 
thermal fluctuations, a magnetic moment of a single-domain nanoparticle is in one of the en-
ergy minima. In an applied external magnetic field, the energy minima of potential wells shift 
with respect to each other, some minima disappear, others appear. Therefore, when an exter-
nal magnetic field changes, a magnetic moment of a particle can jump from one potential well 
to another. In Fig. 3a-3d shows an example of a change in a total energy density of a uniaxial 
nanoparticle, 
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under an influence of an external magnetic field, where the magnitude of a magnetic field is 

normalized to the particle anisotropy field, aHHh



, Ha = 2K1/Ms.  

A magnitude of a magnetic field in Fig. 3a-3d is equal to H = 0, 300, 700, 4000 Oe, respec-
tively. An uniaxial magnetic anisotropy constant and a saturation magnetization are K1 = 
0.4·105 erg/cm3 and Ms = 400 emu/cm3, respectively. A direction of A magnetic field is de-

termined by the angles (θH = /2, φH = 0). In Fig. 3 this direction is shown by an arrow. 
 



 
Fig. 3. Change in a total energy density of a uniaxial nanoparticle under an influence of an  

external magnetic field directed perpendicular to an easy axis of anisotropy. 
 

As Fig. 3a - 3d show, with an increase of an external magnetic field H, potential wells of a 

particle gradually merge, and in fields H  2000 Oe, only one potential well remains. Note 
that when constructing the energy surfaces shown in Fig. 3b - 3d, we add the corresponding 
positive constant to equation (6) to make the radius values positive. As indicated in the intro-
duction, addition of an arbitrary constant to a total energy of a particle does not affect the 
physics of the processes, but leads to a corresponding change in the relative scales of the fig-
ures.  
A similar picture of transformation of energy surfaces for nanoparticles with different types of 
magnetic anisotropy. For simplicity, only symmetric directions of an external magnetic field 
with respect to axes of a magnetic anisotropy of a nanoparticle are considered. In Fig. 4–7 
show a conversion of a total energy density depending on a type of particle anisotropy and a 
magnitude of an applied external magnetic field. In each case, a direction of a magnetic field 
is indicated by an arrow. 
 
Figure 4 shows an influence of an external field on a surface shape of a total energy density of 
a nanoparticle in a case of cubic anisotropy; an anisotropy energy density of this type is de-
scribed by formula (2). Here, magnetic anisotropy constants and saturation magnetization 
are K1с = - 0.4·105 erg/cm3, K2c = 0, Ms = 400 emu/cm3. 



 
Fig. 4. An influence of an external magnetic field on a surface shape of a total energy density 

of a nanoparticle in a case of cubic magnetic anisotropy at K1c < 0, K2c = 0.  

(Field direction θH = /2, φH = 0) 
 

 

 
Fig. 5. An influence of an external magnetic field on a surface shape of a total energy density 
of a nanoparticle in a case of combined anisotropy (cubic anisotropy + uniaxial shape anisot-

ropy) for K1c < 0, K2c = 0. (Field direction θH = /2, φH = 0) 



Figure 5 shows an influence of an external field on a surface shape of a nanoparticle total en-
ergy density in the case of combined anisotropy. Here, combined anisotropy is the sum of 

crystalline anisotropy,   ca Kw 1, , with shape anisotropy,    cef KnK 1

2
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
 . A uniaxial 

magnetic anisotropy constant and saturation magnetization are K1с = - 0.4·105 erg/cm3, K2c = 
0, Ms = 400 emu/cm3, a ratio of a shape anisotropy constant to a crystalline anisotropy con-
stant is, Kef/K1c = 0.1.  A direction of an easy shape anisotropy vector, n, is indicated by an ar-
row. 
 

 
Fig. 6. An influence of an external magnetic field on a surface shape of a nanoparticle total 

energy density in a case of cubic anisotropy for K1c > 0, K2c = 0.  

(Field direction θH = /2, φH = 0) 
 

Figure 6 shows a form of a reduced energy density of cubic magnetic anisotropy, 
  ca Kw 1,

, 
equation (2), depending on a magnitude of an external field, for a case K1c > 0, K2c = 0.  Con-
stants of magnetic anisotropy and saturation magnetization are K1с = 0.4·105 erg/cm3, K2c = 0, 
Ms = 400 emu/cm3. 
Figure 7 shows a reduced energy density of uniaxial magnetic anisotropy (1) as a function of 
the external field for the case K1 < 0, K2 = 0. Constants of magnetic anisotropy and saturation 
magnetization are K1 = - 0.4·105 erg/cm3, K2 = 0, Ms = 400 emu/cm3. 
Figures 4-7 show that for large values of an applied external field, H > 4000 Oe, a complex 
geometry of a nanoparticle energy density, caused by a contribution of anisotropy, completely 
disappears. A single minimum of energy appears along the direction of the magnetic field. 
 



 
Fig. 7. An influence of an external magnetic field on a surface shape of a total energy density 

of a nanoparticle in a case of uniaxial anisotropy at K1 < 0, K2 = 0  

(Field direction θH = /2, φH = 0) 

4. Conclusion 
Thus, we see that properties of magnetic nanoparticles are determined by a whole set of geo-
metric and magnetic parameters, namely, an external shape of particles, a distribution of easy 
axes of magnetocrystalline anisotropy, a value of magnetic anisotropy constants, and satura-
tion magnetization. For applications, it is also very important whether a particle is single-
crystal or consists of individual crystallites of different spatial orientations connected by an 
exchange interaction. In real experimental ensembles, there is usually a significant scatter of 
nanoparticles in size and shape. Particles are often polycrystalline. In polycrystalline nano-
particles, anisotropic interactions are significantly averaged, which affects a characteristic 
size of a single domain and a coercive force of nanoparticles [16]. Therefore, magnetic proper-
ties of such ensembles of nanoparticles are very difficult to control. 
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